If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-14u+45=0
a = 1; b = -14; c = +45;
Δ = b2-4ac
Δ = -142-4·1·45
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4}{2*1}=\frac{10}{2} =5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4}{2*1}=\frac{18}{2} =9 $
| y/3+8=10 | | 2x/3-3×/4+5×/2=-29/12 | | 1/2x-3=6+2x | | 1/8x^2+20x-800=0 | | -39-(31)=x/12 | | 52=3(4x+9)+5x | | 20=x7 | | 8x-8=8x-2 | | 5(7a+2)=255 | | 2.3=4.4-0.7x | | -8(1+7b)=216 | | -0.5=2.5n-1.5n-4.1 | | g/3-3=1 | | 4x=11x6 | | x+x^2=195 | | 9x^+9=7x^+27 | | -42n-22=-484 | | 7(x+2)+3=30 | | 3s19;5=-6 | | 4x^2-2x^2+19x-6=180 | | 7b+-20=78 | | 2/9p=8 | | −8(n−7)+3(3n−3)=41 | | -6u^2-11u+10=0 | | -16x^2+33x=0 | | -9+-3q=-18 | | |-3x-3|+2=26 | | -3(2s-1)-3=-3(8s+7)-3 | | 1.6(b+6)-(5.4-0.6b)=-4+3 | | 2a-5/6=15 | | -5=n÷14-6 | | 6x^2-10x=5 |